Question

A tank can be filled by tap A in 4 hours while tap B can fill the same in 6 hours. Tap C can empty the filled tank in 8 hours. If all three taps are opened simultaneously, how much approximate time will be taken to fill the tank completely?

एक टंकी को नल A द्वारा 4 घंटे में भरा जा सकता है जबकि नल B उसी को 6 घंटे में भर सकता है। नल C भरी हुई टंकी को 8 घंटे में खाली कर सकता है। यदि तीनों नलों को एक साथ खोल दिया जाए, तो टंकी को पूरा भरने में लगभग कितना समय लगेगा?

A.
B.
C.
D.
Answer A.
Answer explanationShare via Whatsapp
A.

Tap A can fill the tank in = 4 hours

The part of the tank filled by tap A in 1 hours = ¼ units

Tap B can fill the tank in = 6 hours

The part of the tank filled by tap B in 1 hours = ⅙ units

Tap C can empty the tank in = 8 hours 

The part of the tank empty by tap C in 1 hours = ⅛ units

Because the tap C empty the tank so first we will add the part of the tank filled by tap A and B in 1 hours then we will subtract the part empty by tap C in 1 hours from it.

If all three taps are opened simultaneously, then the part of the tank filled in 1 hours = The part of the tank filled by tap A in 1 hours + The part of the tank filled by tap B in 1 hours - The part of the tank empty by tap C in 1 hours

= ¼+⅙-⅛ = (6+4-3)/24 = 7/24

So the time taken to fill the tank completely = 1/(7/24) hours 

= 24/7 hours 

= 3 hours 26 minutes

Hence the correct answer is option A.

A.

नल A टैंक को = 4 घंटे में भर सकता है

नल A द्वारा 1 घंटे में भरा गया टैंक का भाग = ¼ यूनिट 

नल B टंकी को = 6 घंटे में भर सकता है

नल B द्वारा 1 घंटे में भरा गया टैंक का भाग = ⅙ यूनिट 

नल C टैंक को = 8 घंटे में खाली कर सकता है

नल C द्वारा 1 घंटे में खाली किया गया टैंक का भाग = ⅛ यूनिट 

क्योंकि नल C टैंक को खाली करता है इसलिए पहले हम नल A और B द्वारा घंटे में टैंक के भरे गए हिस्से को जोड़ेंगे फिर हम उसमें से 1 घंटे में नल C द्वारा खाली किए गए हिस्से को घटा देंगे।

यदि तीनों नल एक साथ खोले जाते हैं, तो 1 घंटे में भरा गया टैंक का भाग = नल A द्वारा 1 घंटे में भरा गया टैंक का हिस्सा + नल B द्वारा 1 घंटे में भरा गया टैंक का हिस्सा - टैंक का हिस्सा नल C द्वारा 1 घंटे में खाली

= ¼+⅙-⅛ = (6+4-3)/24 = 7/24 यूनिट 

अत: टंकी को पूरा भरने में लगा समय = 1/(7/24) घंटे

= 24/7 घंटे

= 3 घंटे 26 मिनट

अतः सही उत्तर विकल्प A है।

Comments

View Similar questions (संबन्धित प्रश्न देखें)

Question
A tank is normally filled in 8 hours but takes 2 hours longer to fill because of a leak in its bottom. If the cistern is full, in how many hrs will the leak empty it?
एक टैंक सामान्य रूप से 8 घंटे में भर जाता है, लेकिन इसके तल में रिसाव के कारण भरने में 2 घंटे अधिक समय लगता है। यदि टैंक भरा हुआ है, तो रिसाव के कारण कितने बजे तक खाली हो जाएगा?
A.
B.
C.
D.
Answer C.
Question

Two pipes can fill a cistern separately in 24 minutes and 40 minutes respectively. A waste pipe can drain off 30 litres per minute. If all three pipes are opened, the cistern fills in one hour. The capacity (in litres) of the cistern is–

दो पाइप अलग अलग रूप से एक टैंक को क्रमश: 24 मिनट और 40 मिनट में भर सकते हैं. एक निकासी पाइप प्रति लीटर 30 लीटर प्रति मिनट बाहर निकाल सकता है. यदि सभी तीन पाइप एक साथ खोले जाते हैं, तो टैंक एक घंटे में भर जाता है. टैंक की क्षमता (लीटर में) कितनी है-

A.
B.
C.
D.
Answer C.
Question

Two pipes A and B can separately fill a cistern in 60 min and 75 min respectively. There is a third pipe in the bottom of the cistern to empty it. If all the three pipes are simultaneously opened, then the cistern is full in 50 min. In how much time, the third pipe alone can empty the cistern ?

दो पाइप A और B अलग-अलग एक टंकी को क्रमश: 60 मिनट और 75 मिनट में भर सकते हैं। टंकी के तल में इसे खाली करने के लिए एक तीसरा पाइप है। यदि तीनों पाइपों को एक साथ खोल दिया जाए, तो टंकी 50 मिनट में भर जाती है। तीसरा पाइप अकेले टंकी को कितने समय में खाली कर सकता है?

A.
B.
C.
D.
Answer D.
Question

A tap can fill a cistern in 8 h and another tap can empty it in 16 h. If both the taps are open, the time taken to fill the tank will be

एक नल 8 घंटे में एक टंकी भर सकता है और एक अन्य नल इसे 16 घंटे में खाली कर सकता है। यदि दोनों नल खुले हैं, तो टैंक को भरने में लगने वाला समय होगा ?

A.
B.
C.
D.
Answer C.