Given that 1 + 2 + 3 ... . + 10 = 55 , then what is ( 11 + 12 + 13 + ... . + 20 ) equal to ?
दिया गया है कि 1 + 2 + 3 ... . + 10 = 55 , तो ( 11 + 12 + 13 + ... . + 20 ) किसके बराबर है ?
Solution:
Sum of the series 1 + 2 + 3…….. + 20 = n(n+1)/2
= 20(20+1)/2
= 20 x 21 / 2
= 10 x 21
= 210
Given that 1 + 2 + 3 ... . + 10 = 55
Then -
( 11 + 12 + 13 + ... . + 20 ) = Sum of (1 + 2 + 3…….. + 20) - Sum of (1 + 2 + 3 ...10)
= 210 - 55
= 155
So ( 11 + 12 + 13 + .... + 20 ) = 155
So the correct answer is option A.
हल:
श्रेणी 1 + 2 + 3…….. + 20 का योग = n(n+1)/2
= 20(20+1)/2
= 20 x 21 / 2
= 10 x 21
= 210
दिया गया है कि 1 + 2 + 3 ... . + 10 = 55
तब -
( 11 + 12 + 13 + ... . + 20 ) = 1 + 2 + 3…….. + 20 का योग - 1 + 2 + 3 ... . + 10 का योग
= 210 - 55
= 155
अतः ( 11 + 12 + 13 + ... . + 20 ) = 155
अतः सही उत्तर विकल्प A है l