Problems on Train Questions with Solution

Share via Whatsapp

Problems on Train is an important topic from the government exam point of view. The train-related questions are frequently asked in many competitive exams such as - Railway, SSC, Bank, or State Government exams. The weightage of questions asked from this topic is mostly between 1-3 marks.

 If you want to get command over this chapter then it is very important to understand its basic concept first. If you understand its basic concept then you can easily solve any type of question whether it is easy or difficult.

In this article, we will cover all types of questions related to trains. And all types of trains question with solution is given here. 

Table of Content

trains questions with solution

First, we will see the formula which we use to solve the train’s question. 

Basic Concept

  • Speed = Distance/Time
  • If the distance is in kilometers and the time is in the hour so speed = km/hr
  • If the distance is in meters and the time is in a second so the speed = m/s
  • To convert the speed in km/hr to m/s, we multiply it with 5/18 - speed*km/hr = (speed*5/18)m/s
  • To convert the speed in m/s to km/hr, we multiply it with 18/5 - speed*m/s = (speed*18/5)km/hr
  • When a train crosses a stationary object like a man, pole, or tree. In this case, the distance traveled is the length of the train. 
  • When a train crosses a stationary object like a platform/ bridge (which has length). In this case, the distance traveled is the length of the train and the length of the object. If the length of the platform/bridge is a and the length of the train is b so the total distance = a+b
  • If two trains are moving in the same direction at x m/s and y m/s so the relative speed = (x - y) m/s
  • If two trains are moving in the opposite direction at x m/s and y m/s so the relative speed = (x+y) m/s
  • If two trains of length a meters and b meters are moving in the same direction at x m/s and y m/s, then the time is taken by the faster train to cross the slower train = a+b / x-y
  • If two trains of length a meters and b meters are moving in opposite directions at x m/s and y m/s then the time taken by the trains to cross each other = a+b / x+y
  • Two trains start from two points A and B at the same time and move towards each other. These trains take x and y seconds to reach points A and B respectively, the relation between them is - Speed of A/Speed of B = √y/√x

Now we will see the different types of questions that come from this topic. 

Problems on Trains Question with explanation

1. Simple Formula Based Questions

In simple formula-based questions, only by applying the formula, we get the answer. The formula is - Speed = (Distance/Time). If distance and time or speed and distance or speed and time are given so we can easily find the third one. The example of formula based simple question is given below - 

Question 1.
A train is running at the speed of 40m/s. How much time it will take to cover the distance of 200 m.
एक रेलगाड़ी 40 मी/से की चाल से चल रही है। 200 मीटर की दूरी तय करने में उसे कितना समय लगेगा।
A.
B.
C.
D.

2. Conversion Based questions

Km per hour to meter per second conversion image

In the conversion-based question, if the speed is given in km/hr and we have to find the speed into m/s, so we multiply the speed which is given in km/hr with 5/18.

If the speed is given in m/s and we have to find the speed into km/hr so we multiply the speed which is given in m/s with 18/5. Don't get confused the example of conversion-based questions is given below - 

Question 1.
A train is running at a speed of 90 km/hr. Find the speed in m/s.
एक ट्रेन 90 किमी/घंटा की चाल से चल रही है। मी/से में चाल ज्ञात कीजिए।
A.
B.
C.
D.
Question 2.
A train is running at the speed of 30m/s. Find the speed in km/hr.
एक ट्रेन 30 मी/से की चाल से चल रही है। किमी/घंटा में चाल ज्ञात कीजिए।
A.
B.
C.
D.

3. Stable Object With No Length

In this type of question, it is given that a train crosses a stable object like a man, pole, lamp post, or tree and you are required to find either the speed of train or length of train or time taken by train to cross the object. 

When a train crosses these stationary objects, in this case, the total distance covered is the length of the train Because after meeting the object the distance traveled by the train in crossing the object is equal to the length of the train. The example is given below - 

Question 1.
A train traveling at 60 km/hr crosses a man in 6 seconds. What is the length of the train?
60 किमी/घण्टा की चाल से चलने वाली एक रेलगाड़ी एक व्यक्ति को 6 सेकण्ड में पार करती है। ट्रेन की लंबाई कितनी है?
A.
B.
C.
D.
Question 2.
A train with a speed of 60km/hr crosses a lamp post in 2 minutes. The length of the train is:
एक ट्रेन 60 किमी/घंटा की गति से एक लैम्प पोस्ट को 2 मिनट में पार करती है। ट्रेन की लंबाई है:
A.
B.
C.
D.

4. Stable Object With Length

When a train crosses a stationary object like a platform/ bridge/tunnel (which has length). In this case, the distance traveled is the length of the train and the length of the object. If the length of the platform/bridge/tunnel is a and the length of the train is b so the total distance covered = a+b. The example is given below - 

Question 1.
The length of the bridge, which a train 130 meters long and traveling at 45 km/hr can cross in 30 seconds, is:
उस पुल की लंबाई कितनी है जिसे, 130 मीटर लंबी और 45 किमी/घंटा की गति से चलने वाली ट्रेन 30 सेकंड में पार करती है:
A.
B.
C.
D.
Question 2.
A train is moving at 120 km/hr. The length of the train is 150 meters. How long will it take to cross a platform of 100 meters?
एक ट्रेन 120 किमी/घंटा की गति से चल रही है। ट्रेन की लंबाई 150 मीटर है। 100 मीटर के प्लेटफॉर्म को पार करने में उसे कितना समय लगेगा?
A.
B.
C.
D.

5. Running Object With No Length

There are two conditions - If a man is running in the same direction of the train or if the man running in the opposite direction of the train.

5.1. Running object in the same direction of train

If a man is running in the direction of the train and the speed of the train is x m/s and the speed of man is y m/s, so the relative speed will be (x-y) m/s. And the total distance covered will be the length of the train. The example is given below -

Question 1.
A train of length 100 meters is moving at a speed of 70 km/hr. At what time will it cross a man who is walking at 10 km/hr in the same direction?
100 मीटर लंबी एक ट्रेन 70 किमी/घंटा की गति से चल रही है। वह उसी दिशा में 10 किमी/घंटा की गति से चलने वाले व्यक्ति को कितने समय में पार करेगी?
A.
B.
C.
D.
Question 2.
A train overtakes two persons who are walking in the same direction in which the train is going, at the rate of 2 km/hr and 4 km/hr, and passes them completely in 9 and 10 seconds respectively. Find the length of the train?
एक ट्रेन 2 किमी/घंटा और किमी/घंटा की गति से उसी दिशा में चल रहे दो व्यक्तियों से आगे निकल जाती है और उन्हें क्रमशः 9 और 10 सेकंड में पूरी तरह से पार कर लेती है। ट्रेन की लंबाई ज्ञात कीजिए?
A.
B.
C.
D.

5.2. Running object in the opposite direction of train

If a man is running in the opposite direction of the train and the speed of the train is x m/s and the speed of man is y m/s, so the relative speed will be (x+y) m/s. And the total distance covered will be the length of the train. The example is given below -

Question 1.
A train of length 200 meters is moving at a speed of 80 km/hr. What time will it cross a man who is running at 10 km/hr in the opposite direction of the train?
200 मीटर लंबी एक ट्रेन 80 किमी/घंटा की गति से चल रही है। ट्रेन की विपरीत दिशा में 10 किमी/घंटा की गति से चलने वाले व्यक्ति को वह कितने समय में पार करेगी?
A.
B.
C.
D.
Question 2.
A boy runs on the platform of 180 m at a speed of 10 km/hr in the same direction of the train. Find the time taken by the train to cross the running boy if the speed of the train is 71 km/hr? (Length of train = Length of platform)
एक लड़का 180 मीटर के प्लेटफॉर्म पर ट्रेन की एक ही दिशा में 10 किमी/घंटा की गति से दौड़ता है। यदि ट्रेन की गति 71 किमी/घंटा है, तो दौड़ते हुए लड़के को पार करने में ट्रेन द्वारा लिया गया समय ज्ञात कीजिए? (ट्रेन की लंबाई = प्लेटफॉर्म की लंबाई)
A.
B.
C.
D.

6. Running Object With Length

There are two conditions - If the trains are running in the same direction of each other or if the trains are running in the opposite direction of each other.

6.1. Running object in the same direction 

If two trains are moving in the parallel direction at the speed of xm/s and ym/s so the relative speed = (x-y) m/s

If two trains of lengthmeters and b meters are moving in the same direction at the speed of x m/s and y m/s, then the time is taken by the faster train to cross the slower train = a+b / x-y. The example is given below - 

Question 1.
Two trains of length 120 meters and 140 meters are moving in the same direction on parallel tracks at speeds of 82 km/hr and 64 km/hr. At what time the first train will cross the second train?
120 मीटर और 140 मीटर लंबी दो ट्रेनें समानांतर पटरियों पर 82 किमी/घंटा और 64 किमी/घंटा की गति से एक ही दिशा में आगे बढ़ रही हैं। पहली ट्रेन दूसरी ट्रेन को कितने समय में पार करेगी?
A.
B.
C.
D.
Question 2.
Two trains of equal length are running on parallel lines in the same direction at 46 km/hr and 36 km/hr. The faster train passes the slower train in 36 seconds. The length of each train is:
समान लंबाई की दो ट्रेनें समान दिशा में 46 किमी/घंटा और 36 किमी/घंटा की गति से समानांतर पटरियों पर चल रही हैं। तेज गति वाली ट्रेन 36 सेकंड में धीमी ट्रेन को पार करती है। प्रत्येक ट्रेन की लंबाई है:
A.
B.
C.
D.

6.2. Running object in the opposite direction 

If two trains are moving in the opposite direction at the speed of x m/s and y m/s so the relative speed = (x+y) m/s 

If two trains of length a meter and b meters are moving in opposite directions at the speed of x m/s and y m/s then the time taken by the trains to cross each other = a+b / x+y. The example is given below - 

Question 1.
Two trains of length 140 meters and 166 meters are moving towards each other on parallel tracks at a speed of 50 km/hr and 60 km/hr respectively.In what time the trains will cross each other from the moment they meet?
140 मीटर और 166 मीटर लंबाई की दो ट्रेनें समानांतर पटरियों पर क्रमशः 50 किमी/घंटा और 60 किमी/घंटा की गति से एक-दूसरे की ओर बढ़ रही हैं। एक दूसरे से मिलने के कितने समय में वे एक-दूसरे को पार करेंगी?
A.
B.
C.
D.
Question 2.
A train 108 m long moving at a speed of 50 km/hr crosses a train 112 m long coming from the opposite direction in 6 seconds. The speed of the second train is:
एक 108 मीटर लंबी ट्रेन 50 किमी/घंटा की गति से चलती है, विपरीत दिशा से आने वाली 112 मीटर लंबी ट्रेन को 6 सेकंड में पार करती है। दूसरी ट्रेन की गति है:
A.
B.
C.
D.

Mixed questions

Question 1.
Two trains running in opposite directions cross a man standing on the platform in 36 seconds and 26 seconds respectively. The trains cross each other in 30 seconds. What is the ratio of their speeds?
विपरीत दिशाओं में चल रही दो ट्रेनें प्लेटफॉर्म पर खड़े एक व्यक्ति को क्रमशः 36 सेकंड और 26 सेकंड में पार करती हैं। ट्रेनें 30 सेकंड में एक दूसरे को पार करती हैं। उनकी गति का अनुपात क्या है?
A.
B.
C.
D.
Question 2.
Two goods trains, each 500 m long, are running in opposite directions on parallel tracks. Their speeds are 45 km/hr and 30 km/hr respectively. Find the time taken by the slower train to pass the driver of the faster one:
दो मालगाड़ियां, प्रत्येक 500 मीटर लंबी, समानांतर पटरियों पर विपरीत दिशाओं में चल रही हैं। इनकी गति क्रमश: 45 किमी/घंटा और 30 किमी/घंटा है। धीमी ट्रेन द्वारा तेज गति के चालक को पार करने में लगने वाला समय ज्ञात कीजिए:
A.
B.
C.
D.
Question 3.
Two trains of equal lengths take 10 seconds and 15 seconds respectively to cross a telegraph post. If the length of each train is 120 metres, in what time (in seconds) will they cross each other travelling in opposite directions?
समान लंबाई की दो ट्रेनें एक टेलीग्राफ पोस्ट को पार करने में क्रमशः 10 सेकंड और 15 सेकंड का समय लेती हैं। यदि प्रत्येक ट्रेन की लंबाई 120 मीटर है, तो वे विपरीत दिशाओं में यात्रा करते हुए एक दूसरे को कितने समय (सेकंड में) में पार करेंगी?
A.
B.
C.
D.
Question 4.
A man sitting on a train which is running at a speed of 100 km/hr saw a goods train which was running in the opposite direction towards him. The goods train crosses the man in 8 seconds. If the length of a goods train is 300 meters, find its speed.
100 किमी/घंटा की गति से चल रही रेलगाड़ी पर बैठे एक व्यक्ति ने एक मालगाड़ी को देखा जो विपरीत दिशा में उसकी ओर आ रही थी। मालगाड़ी 8 सेकंड में आदमी को पार करती है। यदि एक मालगाड़ी की लम्बाई 300 मीटर है, तो उसकी चाल ज्ञात कीजिए।
A.
B.
C.
D.

Click here for more train-related questions

Click here to take trains questions online test

Comments