1 + 2 + 3 + .......... + 49 + 50 + 49 + 48 + ........ + 3 + 2 + 1 is equal to:
1 + 2 + 3 + .......... + 49 + 50 + 49 + 48 + ........ + 3 + 2 + 1 किसके बराबर है l
Solution:
Here two series are given -
First = 1 + 2 + 3 + .......... + 49 + 50
Second = 49 + 48 + ........ + 3 + 2 + 1
Sum of n natural numbers = n(n+1)/2
For first series n = 50
Then -
= 50 (50+1)/2
= 25 x 51
= 1275
For second series = n = 49
Then -
49 (49+1)/2
= 49 x 50 /2
= 49 x 25
= 1225
Therefore 1 + 2 + 3 + .......... + 49 + 50 + 49 + 48 + ........ + 3 + 2 + 1 = 1275 + 1225
= 2500
So the correct answer is option B.
हल:
यहाँ पर दो श्रेणियाँ दी गयी है -
पहली = 1 + 2 + 3 + .......... + 49 + 50
दूसरी = 49 + 48 + ........ + 3 + 2 + 1
n प्राकृतिक संख्याओं के योग = n(n+1)/2
पहली श्रेणी के लिए n = 50
तब -
= 50 (50+1)/2
= 25 x 51
= 1275
दूसरी श्रेणी के लिए = n = 49
तब -
49 (49+1)/2
= 49 x 50 /2
= 49 x 25
= 1225
अतः 1 + 2 + 3 + .......... + 49 + 50 + 49 + 48 + ........ + 3 + 2 + 1 = 1275 + 1225
= 2500
अतः सही उत्तर विकल्प B है l
Sum of 112+122+132+....+212 ?
112+122+132+....+212 का योग = ?